Alterations in penicillin-binding protein 1A confer resistance to beta-lactam antibiotics in Helicobacter pylori.

نویسندگان

  • M M Gerrits
  • D Schuijffel
  • A A van Zwet
  • E J Kuipers
  • C M J E Vandenbroucke-Grauls
  • J G Kusters
چکیده

Most Helicobacter pylori strains are susceptible to amoxicillin, an important component of combination therapies for H. pylori eradication. The isolation and initial characterization of the first reported stable amoxicillin-resistant clinical H. pylori isolate (the Hardenberg strain) have been published previously, but the underlying resistance mechanism was not described. Here we present evidence that the beta-lactam resistance of the Hardenberg strain results from a single amino acid substitution in HP0597, a penicillin-binding protein 1A (PBP1A) homolog of Escherichia coli. Replacement of the wild-type HP0597 (pbp1A) gene of the amoxicillin-sensitive (Amx(s)) H. pylori strain 1061 by the Hardenberg pbp1A gene resulted in a 100-fold increase in the MIC of amoxicillin. Sequence analysis of pbp1A of the Hardenberg strain, the Amx(s) H. pylori strain 1061, and four amoxicillin-resistant (Amx(r)) 1061 transformants revealed a few amino acid substitutions, of which only a single Ser(414)-->Arg substitution was involved in amoxicillin resistance. Although we cannot exclude that mutations in other genes are required for high-level amoxicillin resistance of the Hardenberg strain, this amino acid substitution in PBP1A resulted in an increased MIC of amoxicillin that was almost identical to that for the original Hardenberg strain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of an In vitro-selected amoxicillin-resistant strain of Helicobacter pylori.

An amoxicillin-resistant (Amox(r)) strain of Helicobacter pylori was selected for by culturing an amoxicillin-sensitive (Amox(s)) strain in increasingly higher concentrations of amoxicillin, resulting in a 133-fold increase in MIC, from 0.03 to 0.06 microg/ml to 4 to 8 microg/ml. This resistance was stable upon freezing for at least 6 months and conferred cross-resistance to seven other beta-la...

متن کامل

The role of active efflux in antibiotic - resistance of clinical isolates of Helicobacter pylori.

PURPOSE In gram-negative bacteria, active efflux pumps that excrete drugs can confer resistance to antibiotics however, in Helicobacter pylori this role is not well established. The purpose of this study is to evaluate the role of active efflux in resistance of H. pylori isolates to antibiotics. MATERIALS AND METHODS Twelve multiple antibiotic resistant (MAR) isolates resistant to at least fo...

متن کامل

Lysis of Escherichia coli by beta-lactams which bind penicillin-binding proteins 1a and 1b: inhibition by heat shock proteins.

The heat shock proteins (HSPs) of Escherichia coli were artificially induced in cells containing the wild-type rpoH+ gene under control of a tac promoter. At 30 degrees C, expression of HSPs produced cells that were resistant to lysis by cephaloridine and cefsulodin, antibiotics that bind penicillin-binding proteins (PBPs) 1a and 1b. This resistance could be reversed by the simultaneous additio...

متن کامل

Resistance to β-Lactam Antibiotics Conferred by Point Mutations in Penicillin-Binding Proteins PBP3, PBP4 and PBP6 in Salmonella enterica

Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no sy...

متن کامل

Identification, purification, and characterization of transpeptidase and glycosyltransferase domains of Streptococcus pneumoniae penicillin-binding protein 1a.

Resistance to beta-lactam antibiotics in Streptococcus pneumoniae is due to alteration of penicillin-binding proteins (PBPs). S. pneumoniae PBP 1a belongs to the class A high-molecular-mass PBPs, which harbor transpeptidase (TP) and glycosyltransferase (GT) activities. The GT active site represents a new potential target for the generation of novel nonpenicillin antibiotics. The 683-amino-acid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 46 7  شماره 

صفحات  -

تاریخ انتشار 2002